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Abstract
We report an extensive finite-size study of polymer networks near the
percolation threshold, using numerical techniques. The polymers are modeled
by random walks occupying the bonds of a two-dimensional square lattice. We
measure the percolation threshold and critical exponents of the networks for
various polymer lengths. We find that the critical occupation probability is a
decreasing function of the polymer length, and the percolation of polymers with
a fixed polymer length belongs to the same universality class as ordinary bond
percolation. By adding particles to the lattice cells we can study the diffusion
process in polymer networks. Measuring the current near percolation, we
observe that its critical exponent is also independent of polymer length.

PACS numbers: 05.40.Fb, 64.60.Ak, 61.41.−e, 75.40.Mg

1. Introduction

Percolation is a well-studied phenomenon that has numerous applications in various fields
[1]. In previous studies it was often assumed that the probability of a bond, or site, being
occupied is independent of its surroundings. This assumption simplifies the problem, but is
not always satisfied in reality. The introduction of correlations into the percolation problem
dates back to the 1970s, when Duckers [2, 3] studied site percolation with correlations.
These early simulation data seemed to suggest a non-monotonic behavior of the percolation
threshold as a function of the correlation strength. Since then, percolation with various types
of correlations has been investigated by many authors. In some cases, the emphasis was
placed on non-universal properties, such as the percolation threshold, while in others the
focus was on universal critical behavior. To mention just a few studies, the ‘environmental
percolation’ model was used to describe some diluted magnetic systems [4]. The critical
properties of ‘site-bond-correlated’ percolation were studied on two-dimensional lattices, and
the associated exponents were found to be the same as those of the usual percolation problem
[5]. Research on ‘granular percolation’ was also carried out [6, 7]. In these studies, the grains
are grown around seeds up to a specified number of occupied nearest neighbors, and ‘larger’
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grains are considered to have ‘stronger’ correlations. It was claimed that the percolation
threshold, as a function of the grain size, also followed a non-monotonic relation [6, 7].
Self-avoiding objects, in the form of grains or linear chains, were also considered [8, 9].
Percolation of polymers, modeled by non-interacting random walks, was studied by two of us
and collaborators [10, 11].

In the following, we continue this work and focus specifically on the extrapolation to
infinite system size. Since our study was motivated by quenching polymer melts into thin films
[12], we will model our polymers by Gaussian walks, an approximation which is justifiable
on experimental grounds [13, 14]. Specifically, we consider non-interacting random walks on
the bonds of a two-dimensional square lattice. For a given system, all polymers have a fixed
length � (number of segments in a polymer). Since the walks are non-interacting, any given
bond can be occupied by multiple segments, belonging to the same or a different polymer. In
experimental setups, a convenient control parameter is the mass density, ρ. In our case, ρ is
just the mass of a segment (assumed to be unity here), multiplied by the number of polymer
segments and divided by the total number of bonds on the lattice, N (i.e., the ‘volume’ of our
system). Defining M as the number of polymers in the system, we have

ρ = M�

N
. (1)

In the theory of percolation, the traditional control parameter is the occupation probability p,
being the fraction of occupied bonds in the network:

p = No

N
, (2)

where No is the total number of bonds occupied by one or more segments. Due to multiple
occupancies, p �= ρ in general. Similar to the ordinary percolation problem, the system
percolates—i.e., there is an infinite cluster of occupied bonds—when p (or ρ) is greater than
a characteristic critical value. Critical exponents can also be defined in the same way as in the
ordinary bond percolation and measured numerically. One of our goals here is to measure the
percolation threshold and the critical exponents accurately.

Our study was motivated by experiments on gas permeation through amorphous polymer
films. Such experiments apply constant pressure to one side of the film and measure the gas
current in the steady state [12]. In our simulations, gas molecules are modeled as particles
occupying the cells of the lattice. Particles are allowed to cross unoccupied bonds freely
(i.e., with unit probability). In contrast, occupied bonds may only be crossed with a reduced
probability, q < 1, reflecting the presence of an energy barrier for this process. This simple
model provides a baseline against which more complex models for the real experimental
situation can be compared.

If the crossing probability q models an energy barrier, then it is also related to the
temperature in real experiments. The discussion of polymer percolation is relevant in the
zero-temperature limit where the barriers become completely insuperable. Hence, at q = 0, a
gas current can flow only if the system is not percolated.

A closely related model is the random resistor network which has been intensively studied.
The key difference lies in the spatial distribution of the resistors, which is usually assumed to
be uncorrelated. Hence, our study introduces a specific type of correlations—namely, those
associated with random walks—into the study of resistor networks. Below, we ask whether
these correlations lead to any fundamental (i.e., universal) changes in the resistance of the
network near the percolation threshold.

The remainder of this paper is organized as follows. In section 2 we present our numerical
data. Specifically, we measure the percolation threshold pc and some of the critical exponents
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for several polymer lengths. Section 3 is dedicated to the lattice-gas model. We measure
the current (or conductivity) near percolation and discuss its associated critical exponent. In
particular, we explore the relevance or irrelevance of the polymer length, �. We conclude with
some discussions in section 4.

2. Percolation thresholds and critical exponents

In the previous study [11], numerical simulations indicated that the polymer networks percolate
when the density of polymers is high enough, and the percolation thresholds were roughly
estimated. However, the estimate was based on systems up to 2562. With no attempts at
finite-size scaling, it was not possible to come to quantitatively reliable conclusions about
the percolation threshold, and so, no extrapolation to infinite systems could be undertaken.
In the simulations reported here, we use the famous Hoshen–Kopelman cluster counting
algorithm [16] which allows us to boost the system size up to 81922. With the data from
these significantly larger system sizes, we can exploit finite-size scaling techniques to arrive
at much more accurate estimates for the percolation thresholds for infinite systems.

The results of position-space renormalization group theory for percolation [15] can be
readily applied to our polymer system. The theory predicts that

pc − p∗(L) ∼ L−1/ν, (3)

where pc is the critical occupation probability for the infinite system, ν is the correlation length
exponent and p∗(L) is the ‘fixed point’ for systems with linear size L, i.e., the occupation
probability at which the fraction of percolated configurations f (p∗) equals p∗. One can
measure p∗(L) for varying L and then derive pc and ν by fitting the data to equation (3). An
alternate finite-size scaling relation for the fraction of percolated configurations f (p,L) that
can be used to roughly locate pc is

f (p,L) = f̃ [(p − pc)L
1/ν], (4)

where f̃ (x) is a scaling function. This equation implies that f (pc, L) is a fixed value, f̃ (0),
independent of the system size. Therefore the curves of f (p,L) as a function of p have a
common crossing at pc, which can be used to locate pc approximately. Figure 1(a) illustrates
this feature for l = 8 polymer networks.

It is reasonable to assume that the correlation exponent ν does not depend on �, since it
is determined by the connectivity of clusters which is a long-range property. In a simulation,
ν can be obtained directly, by scaling the maximum of ∂f (p,L)/∂p. In practice, however,
the quality of our data is not sufficient to arrive at a good estimate for ν, since the derivative
exhibits rather large fluctuations. Hence, we proceed by assuming that ν = 4/3—which is
rigorously known for � = 1—holds for any fixed �, and consider the quality of our finite-size
scaling fits as a test for this assumption. Now, the test of equation (3) becomes a one-
parameter fit, so that the critical threshold can be determined with much better accuracy which
is essential to finding critical exponents. Our results of percolation thresholds for � = 2, 4
and 8 are listed in table 1. Equation (4) also implies data collapse near pc, an example being
figure 1(b) for the � = 8 case. Due to limited computer resources, we are only able to generate
rough estimates for the percolation thresholds when � > 8, by locating the common crossing.
These estimates, for � up to 256, are shown in figure 2. The critical occupation probability,
pc, clearly decreases monotonically as � increases. By contrast, the critical mass density, ρc,
displays non-monotonic behavior. The two quantities are related by

pc = 1 − exp (−ρcb�/�) . (5)
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(a) (b)

Figure 1. (a) Fraction of percolated configurations f (p,L) as a function of the occupation
probability p. The curves for different system sizes L intersect at pc . (b) Data collapse of f (p,L)

for polymers of length l = 8.

Table 1. The critical occupation probability pc and the critical exponents β, γ and τ as functions
of the polymer length l.

l pc β/ν γ /ν τ/ν

1 0.5(exact) 0.100(1) 1.796(2) 0.932(13)

2 0.47697(4) 0.101(1) 1.796(2) 0.932(12)

4 0.44892(6) 0.103(1) 1.794(2) 0.939(17)

8 0.41880(4) 0.102(1) 1.795(2) 0.955(16)

Here, b� is the average number of all occupied bonds for a single random walk on an infinite
lattice. It can be found analytically via its generating function [17, 18]

∞∑

�=1

b�z
� = 4z

(1 − z)2 [3 + (1 + z) G (z)]
, (6)

where G(z) ≡ ∫
k

∫
p

[1 − z (cos k + cos p) /2]−1 and
∫
k

≡ ∫ π

−π
dk
2π

(for an infinite lattice). The
precise expression is somewhat involved and not very illuminating. Instead of presenting it,
let us simply remark that b�/� is a dull, monotonically decreasing quantity: 1, 7/8, 5/6, . . .

for � = 1, 2, 3 . . .. Intuitively, this result is not surprising: the longer a random walk, the
higher is the probability for any particular bond to be traversed repeatedly. For our square
lattice, the large � behavior is more interesting, but beyond our scope here.

It is not obvious why the effect of multiple occupancy is so severe that it overcomes the
decrease of pc from � = 1 to 4. Nor it is clear why ρc(�) varies so slowly for large �. Now, it
is easy to prove, exploiting the results in [17], that b�/� in equation (5) vanishes as � goes to
infinity. This would lead us to the conclusion that pc → 0 at the long polymer limit, unless
ρc → ∞ which seems rather unlikely although it cannot be ruled out here. These issues
deserve further investigation.

Although we believe that ν is 4/3 for all fixed �, there is no reason a priori that
other exponents should also remain independent of the polymer lengths. For example, it
is conceivable that the incipient infinite cluster for � > 1 might have a different fractal
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Figure 2. Percolation thresholds in terms of both the occupation probability and the mass density.

dimension D = d − β/ν. We now use finite-size scaling relations to estimate the remaining
critical exponents.

The percolation probability θ(p), defined as the probability that a bond belongs to the
infinite cluster, is controlled by the critical exponent β near pc,

θ(p) ∼ (p − pc)
β, p > pc. (7)

Finite-size scaling then gives

θ̃ (pc, L) ∼ L−β/ν, (8)

where θ̃ is the mass of the largest cluster. The ‘mean cluster size’ χ(p) defines the exponent
γ , via

χ(p) ∼ |p − pc|−γ . (9)

The corresponding finite-size scaling relation is

χ(pc, L) ∼ Lγ/ν. (10)

Using pc obtained above, we can fit the simulation data for θ̃ (pc, L) and χ(pc, L) to
equations (8) and (10), respectively. The resultant critical exponents β/ν and γ /ν are also
shown in table 1. The error bars are purely statistical.

For the ordinary percolation problem, β/ν = 5/48 ≈ 0.104 and γ /ν = 43/24 ≈ 1.792
are known exactly. Compared to our simulation results for � = 1, these values fall slightly
outside the error bars, indicating that there may be small systematic errors. For the other �’s,
all exponents are indistinguishable from the � = 1 case, leading us to conclude that systems
with � > 1 belong to the same universality class as the ordinary bond percolation.

3. Diffusivity near percolation

To study diffusion through polymer networks, we place particles into the lattice cells and
let them diffuse. The rule is simple: a randomly chosen particle attempts to move to one
of four neighboring cells. If the intervening bond is unoccupied (occupied), the attempt is
accepted with probability 1 (q < 1). For our two-dimensional system, we keep the leftmost
column as the source of particles, in which each cell is always filled with a particle. Similarly,
particles at the opposing edge (the rightmost column) are removed immediately. A current J is
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maintained by this concentration gradient and can be measured. This system is equivalent to a
correlated random resistor network on a dual lattice, in which each resistor with conductance q
corresponds to an occupied bond. The correlations are, of course, induced by the connectivity
of the polymers. In order to study the properties near percolation of occupied bonds, we set
q = 0. In other words, below pc, the (infinitely insulating) resistors do not span the system
(transverse to the concentration gradient). There is at least one cluster of ‘free paths’ from the
left to the right, and a current flows.

Near pc, the current approaches zero as a power law, governed by another critical exponent
τ [19]:

J (p) ∼ (pc − p)τ . (11)

The corresponding finite-size scaling relation is

J (pc, L) ∼ L−τ/ν, (12)

through which the ratio τ/ν can be measured. Following the same method as in [18] in systems
with sizes up to 962, our measured values of τ/ν for different polymer lengths are listed in
table 1. Again, we find that the correlations considered here are irrelevant. Systems with
different polymer lengths have statistically indistinguishable values of the critical exponent
τ/ν.

One word of caution is in order. Our results for this exponent are systematically smaller
than those found in high-precision Monte Carlo data for the case � = 1 [20]. This may be due
to the much smaller system sizes used here, and to the presence of highly non-trivial corrections
to scaling [20] which we did not attempt to take into account. In that regard, it would certainly
be worthwhile conducting a more detailed study, to ensure that our conclusion—τ/ν being
independent of �—remains valid even after corrections to scaling have been analyzed.

4. Conclusions and discussions

In this paper, we studied the percolation of polymer networks on a two-dimensional square
lattice. A polymer is modeled by a simple random chain of � bonds. We measured the
percolation threshold and the critical exponents for various � up to 256. We found that the
critical occupation probability is a monotonically decreasing function of the polymer length,
but the critical mass density shows non-monotonic behavior. Our numerical simulations
produced statistically identical critical exponents for � = 1, 2, 4 and 8. Thus, we confirm an
expectation that their properties near the percolation transition belong to the same universality
class. We also studied the diffusion of particles through these polymer networks, subjected to a
concentration gradient across the lattice. Near the percolation threshold, the current vanishes
as a power law in all cases, and again, the associated critical exponent does not appear to
depend on �.

In previous studies [2, 3, 6, 7], the relation between the correlation strength and the
percolation threshold was discussed. In our model, if we deem the polymer length as a
measure of the correlation strength, we would conclude that the critical occupation probability
decreases as the correlation strength goes up. However, a better point of view is to consider
the shape of polymers. It is known that the typical shape of Gaussian walks is not isotropic;
instead, it is elliptical in two dimensions. If we denote the eigenvalues of the inertia tenor by
λ1,2, the distribution of the ratio λ1/λ2 has a long tail, which grows when the polymer length
increases [22]. In other words, longer polymers tend to be more eccentric. It is understandable
that objects that are more anisotropic percolate more effectively. As an example, ellipses with
higher eccentricity percolate more easily [23]. These considerations provide some intuitive
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picture for why the critical occupation probability decreases with increasing polymer length.
It will be interesting whether pc(� → ∞) can indeed be shown to vanish. While we have
offered a conjecture, in the discussion of equation (5), further study is required to answer this
question fully.

Another intriguing aspect concerns corrections to scaling. These play an important role
in the determination of critical exponents in the � = 1 case [20]. It would be interesting to
explore whether these subtleties also emerge for larger �.
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